On a Compression of Normal Matrix Polynomials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a compression of normal matrix polynomials

In this paper, we study a compression of normal matrices and matrix polynomials with respect to a given vector and its orthogonal complement. The numerical range of this compression satisfies special boundary properties, which are investigated in detail. The characteristic polynomial of the compression is also considered.

متن کامل

Some Results on the Field of Values of Matrix Polynomials

In this paper, the notions of pseudofield of values and joint pseudofield of values of matrix polynomials are introduced and some of their algebraic and geometrical properties are studied.  Moreover, the relationship between the pseudofield of values of a matrix polynomial and the pseudofield of values of its companion linearization is stated, and then some properties of the augmented field of ...

متن کامل

Normal matrix polynomials with nonsingular leading coefficients

In this paper, we introduce the notions of weakly normal and normal matrix polynomials, with nonsingular leading coefficients. We characterize these matrix polynomials, using orthonormal systems of eigenvectors and normal eigenvalues. We also study the conditioning of the eigenvalue problem of a normal matrix polynomial, constructing an appropriate Jordan canonical form.

متن کامل

Higher numerical ranges of matrix polynomials

 Let $P(lambda)$ be an $n$-square complex matrix polynomial, and $1 leq k leq n$ be a positive integer. In this paper, some algebraic and geometrical properties of the $k$-numerical range of $P(lambda)$ are investigated. In particular, the relationship between the $k$-numerical range of $P(lambda)$ and the $k$-numerical range of its companion linearization is stated. Moreover, the $k$-numerical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear and Multilinear Algebra

سال: 2004

ISSN: 0308-1087,1563-5139

DOI: 10.1080/03081080310001634804