On a Compression of Normal Matrix Polynomials
نویسندگان
چکیده
منابع مشابه
On a compression of normal matrix polynomials
In this paper, we study a compression of normal matrices and matrix polynomials with respect to a given vector and its orthogonal complement. The numerical range of this compression satisfies special boundary properties, which are investigated in detail. The characteristic polynomial of the compression is also considered.
متن کاملSome Results on the Field of Values of Matrix Polynomials
In this paper, the notions of pseudofield of values and joint pseudofield of values of matrix polynomials are introduced and some of their algebraic and geometrical properties are studied. Moreover, the relationship between the pseudofield of values of a matrix polynomial and the pseudofield of values of its companion linearization is stated, and then some properties of the augmented field of ...
متن کاملOn the distance from a matrix polynomial to matrix polynomials with two prescribed eigenvalues
Consider an n × <span style="fon...
متن کاملNormal matrix polynomials with nonsingular leading coefficients
In this paper, we introduce the notions of weakly normal and normal matrix polynomials, with nonsingular leading coefficients. We characterize these matrix polynomials, using orthonormal systems of eigenvectors and normal eigenvalues. We also study the conditioning of the eigenvalue problem of a normal matrix polynomial, constructing an appropriate Jordan canonical form.
متن کاملHigher numerical ranges of matrix polynomials
Let $P(lambda)$ be an $n$-square complex matrix polynomial, and $1 leq k leq n$ be a positive integer. In this paper, some algebraic and geometrical properties of the $k$-numerical range of $P(lambda)$ are investigated. In particular, the relationship between the $k$-numerical range of $P(lambda)$ and the $k$-numerical range of its companion linearization is stated. Moreover, the $k$-numerical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear and Multilinear Algebra
سال: 2004
ISSN: 0308-1087,1563-5139
DOI: 10.1080/03081080310001634804